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Perspective from the CNNS Director 

Recent advances in growing electrically active cells on substrate-

integrated, thin-film microelectrode arrays in cell culture have led to 

experimental systems in which spontaneous activity can be 

monitored by 64 or more electrodes for periods of time extending to 

six months. These systems are accessible pharmacologically and 

have shown high sensitivity to metabolically active, neuroactive, and 

neurotoxic compounds. For primary neuronal cultures, tissue-

specific responses are now routinely observed, suggesting that 

cultured networks share the pharmacological sensitivity profiles of 

the parent tissue.  Although the number of cells, the ratios of different cell types, and detailed 

circuit structure may vary among cultures, pharmacological responses are robust and highly 

reproducible. Such networks offer new assay and sensing systems that lie between biochemical 

and whole animal experiments and provide rapid, quantitative information on neurophysiological 

responses to chemicals and toxins.   

MEA designs have matured and now provide highly reliable support for routine experiments 

using nerve cells in culture. The large numbers of electrodes and stable cell-electrode coupling 

that can be attained provide massive data on the internal dynamics of such networks. Given the 

experimental progress in pharmacology, the road to meaningful applications in drug 

development, industrial and environmental toxicology, and the domain of tissue-based 

biosensors is now open.  Future challenges are shifting to multinetwork platforms for parallel 

(high throughput) recording, as well as to more sophisticated multichannel data analysis, display, 

and interpretation.  The same methodology can also be applied to other electrically active tissues 

derived from glands (e.g. pancreas), heart, and muscle.  

The first step in the organization of central nervous system function occurs at the small nerve cell 

ensemble level, yet we know little about origins of pattern generation and rules governing pattern 

processing dynamics.  Perhaps the greatest contributions MEA technology can make will be in 

the area of information processing strategies and mechanisms.  Given the substantial progress 

in recent years, nerve cells in vitro can no longer be considered “different” from nerve cells in 

vivo, at least pharmacologically. With further progress, networks in vitro will also be accepted as 

functional, dynamic entities that can provide unique and highly useful information on a whole 

spectrum of unknown mechanisms. Here, the simultaneity of information and long-term 

monitoring that is offered by MEA technology and methodology will prove to be crucial.  To me, it 

is self-evident: We will not understand information processing in the brain until we understand 

pattern processing in small nerve cell networks. 

Finally, applications to neurological diseases and trauma have been initiated. In these research 

domains, methods that provide functional electrophysiological signatures in parallel with 

morphological observations will provide unique insights into network activity changes linked to 

cellular and subcellular damage.  

Guenter W. Gross, Ph.D.; Director, CNNS 
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CNNS Advisory Board 
(as of September 2013) 

 

LOCAL 

Jeff Hamer   President,   Asset Direction Incorporated,   
    jmhamer@gmail.com   
 
Dr. Ernest Moore  Chair, Dept. of Speech and Hearing Sciences, UNT 
    ejmoore@unt.edu 
 
Tahir Rana (PhD/MD)  Medical Director, Cancer Care of North Texas 
    cancercareofnorthtexas@yahoo.com; trana16@yahoo.com      
    
Dr. Fritz Schwalm   Chair, Biology Department, TWU (Emeritus) 
    fritzeschwalm@verizon.net       
   
Dr. Joseph Pancrazio,   Vice Provost & Professor, Department of Biomedical Engineering, UTD 
    Joseph.pancrazio@utdallas.edu 

 

INTERNATIONAL 

Dr. Enric Calverol-Tinture Director and CEO,  
    Afferent Technologies 2016 - UAB Research Park, Eureka Building, 08193  
    Bellaterra, Barcelona 
    eclaverol@eclaverol.com 
 

Short Resumes 

Enric Claverol-Tinturé, 

Dr. Claverol-Tinturé has industrial and academic experience in the area of biomedical technology, as CEO 

of a bioinstrumentation startup and head of Neuroengineering at the Catalonia Institute for Bioengineering 

(IBEC). He was scientific coordinator of two international projects funded by the European Commission in 

the area of neural engineering and frequent evaluator of EU R&D programs. He is presently the CEO of 

Afferent Technologies 2016 - UAB Research Park, Eureka Building, 08193 Bellaterra, Barcelona.  His 

Business Administration and Venture Capital training took place at ESADE and Berkeley Haas Business 

Schools, having previously carried out research at Caltech and Los Alamos National Laboratory. Dr. 

Claverol-Tinturé holds a PhD by the University of Southampton, United Kingdom. 

Jeff Hamer, President of Asset Direction Incorporated.               

Asset Direction Inc. is asset management consultancy and General Partner of a small private market-

neutral equity hedge fund. Previously he co-founded and was CEO of CADG, venture-backed producer of 

enterprise software marketed worldwide including IBM-logo, used by a majority of the largest Fortune 500 

firms. Mr. Hamer was Assistant Professor in the Graduate School of Architecture and Urban Planning at 

UCLA, as well as teaching invited courses worldwide including Harvard and MIT. He is author of Facility 
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Management Systems (Van Nostrand Reinhold, New York) and winner of the International Facility 

Management Association's “Distinguished Author Award” as well as hundreds of published technical and 

managerial papers and invited keynotes. 

Dr. Ernest J. Moore, Professor & Chair, Dept. of Speech and Hearing Sciences, UNT.                                 

Dr. Moore earned a B.S. in Speech-Language Pathology and Audiology at Tennessee A. & I. State 

University (Nashville), a M.A. in Audiology from Northern Illinois University (DeKalb), and a Ph.D. in 

Communicative Disorders, with a specialization in Auditory Electrophysiology from The University of 

Wisconsin (Madison).  Dr. Moore has received numerous awards, fellowships, and grants, including those 

from the National Institutes of Health, Deafness Research Foundation, the National Science Foundation, 

the Montel Williams MS Foundation, and the Once Upon a Time Foundation.  Dr. Moore came to UNT 

from the Medical School at Northwestern University in Chicago, where he held an appointment of 

Research Professor and Knowles Scholar in the Department of Molecular Pharmacology and Biological 

Chemistry/Center for Drug Discovery and Chemical Biology.  Dr. Moore's current research interest lies in 

the investigation of molecular ion channel activity that might underlie tinnitus.  

Joseph J. Pancrazio, Professor, Department of Biomedical Engineering and Vice Provost           

University of Texas at Dallas                                                    

Before coming to UTD in 2015, Dr. Pancrazio served as the chair and founder of the Biomedical 

Engineering program at George Mason University.  Prior to this appointment, Dr. Pancrazio was director 

for neural engineering and the neural prosthesis program at the National Institutes of Health, and served 

as laboratory head and principal investigator at the US Naval Research Laboratory where he developed 

and demonstrated cellular and neuronal based biosensor platforms. His undergraduate degree was in 

electrical engineering from the University of Illinois, followed by his masters of science and PhD degrees in 

Biomedical Engineering from the University of Virginia. Dr. Pancrazio has authored over 90 peer reviewed 

publications and holds two patents. His research interests include advanced materials for neural 

interfaces, neural stem cell electrophysiology, and neuropharmacological assays. 

Tahir M. Rana, M.D., Ph.D., D.A.B.R. - Radiation Oncologist 

Dr. Rana is the medical director of Cancer Care of North Texas. Receiving his medical degree from 

Bahaauddin Zykryia in Multan, Pakistan, Dr. Rana was awarded a Medical Research Council Fellowship 

and received his Ph.D. in tumor immunology from the University of Cambridge, Darwin College in the 

United Kingdom. He completed a bone marrow fellowship at the University of Nebraska and a residency in 

oncology at Wayne State University, Michigan. Having served as a guest speaker at many institutions, Dr. 

Rana has a special interest in the areas of prostate, breast and lung cancer treatment.  He specializes in 

IMRT techniques for the delivery of radiation therapy in the treatment of cancer. He is board certified in 

radiation oncology by the American Board of Radiology. 

Dr. Fritz E Schwalm,  Prof. emeritus, Texas Woman’s University                                                          

Dr. Schwalm graduated  Dr. rer. nat. from the Philipps University in Marburg, Germany. His research 

interests focused on morphogenesis in embryonic development of insects and the molecular determinants 

deposited in the egg during oogenesis. After research appointments at the University of the Witwatersrand 

(Johannesburg, South Africa) and at the University of Notre Dame, he worked as faculty member at the 

University of Illinois with graduate teaching assignments in Developmental Biology and Developmental 

Neurobiology. He was Chair of the Department of Biological Sciences at Illinois State University (1978-

1980) and at the Texas Woman’s University from 1982 – 2001. 
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Introduction to the CNNS 

The CNNS at the University of North Texas is a unique research organization dedicated to the 
study of fundamental mechanisms of the nervous system with a primary focus on the self-
organization and function of small nerve cell networks grown in cell culture on microelectrode 
arrays.  Recently, it has been established that such networks are pharmacologically very 
similar to the parent tissue, allowing lucrative applications to the fields of toxicology, drug 
development, and artificial intelligence through efforts in computational neuroscience.   

 
The CNNS is seeking support from private sources for ongoing research and for 
expansion of research to key disease states, physical trauma, and development 

of high throughput pharma-tox platforms. 
 
We have extensive experience in neuronal cell culture, fabrication of microelectrode arrays, 
and novel multichannel recording techniques.  As a pioneer in microelectrode array recording, 
the CNNS has international visibility.  Since 1990, we have trained over 35 scientists, 
technicians and graduate students from the US and 5 different foreign countries.  This includes 
senior personnel at NeuroProof, a successful new company in Rostock, Germany, which is 
applying nerve cell network analyses to drug development. 
 
The CNNS presently sells microelectrode array plates, recording chambers, miniature 
microscope incubators for cell culture life support, but cannot expand sales or focal research 
areas with current personnel and facility limitations.  

 
The establishment of a Service and R&D Company is needed. 

 

  

 

Mouse spinal cord neurons growing on microelec-
trode arrays featuring transparent indium-tinoxide 
(ITO) conductors.  Such neurons form networks that 
are always spontaneously active. Changes in that 
electrical activity are used to evaluate new chemical 
compounds that are toxic or pharmacologically 
active. Continuous optical and electrophysiological 
monitoring is possible. 

One of 4 CNNS workstations showing recording and 
monitoring equipment.  At the controls is Matthias 
NIssen, visiting Ph.D. student from the University of 
Rostock, Germany. This particular station is coupled 
to a laser microbeam system (pulsed nitrogen laser) 
that allows surgery on the cellular level as well as 
laser stimulation of neurons. 
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Why the CNNS needs your help 

 

 Continual federal and state research support is becoming increasing difficult to maintain.  
This leads to loss of experienced personnel, project disruptions, and substantial 
inefficiencies. 
 

 New insights and promising ideas can often not be pursued because of lack of immediate 
funding for pilot experiments (new grants require 8-10 months for funding and presently 
have success rates below 10%). 
 

 Highly interested and very talented students are often turned away because specific 
scholarships and other student support are not available. 

 

 Technical modifications that would lead to enhanced research efficiencies and increased 
CNNS sales are frequently not possible. 

 

 Advertising and website functionality are also impeded under the present financial 
constraints. 

 

 Many functions and products such as sales of MEAs, custom recording chambers, 
training  support, and (especially) sales of networks grown on MEAs and shipped in 
the living state to end-users should eventually transition to a small R&D company in 
the local area.  Such a development requires private investors.  

 

 

 
 

 

Routine and widespread application of high throughput assay platforms using nerve cell 

networks on microelectrode arrays will result in a drastic reduction of experimental animals 

presently used by industry and government agencies. 

 

 

 

88--NNeettwwoorrkk  rreeccoorrddiinngg  ppllaattffoorrmm  iinn  lliiffee  ssuuppppoorrtt  

cchhaammbbeerr  wwiitthh  rroobboottiicc  mmaaiinntteennaannccee..  

TThheessee  ddeevveellooppmmeennttss  aarree  eesssseennttiiaall  ttoo  aacchhiieevvee  

tthhee  hhiigghh  tthhrroouugghhppuutt  rreeqquuiirreedd  bbyy  iinndduussttrryy..      

TTeecchhnniiccaall  aaddvvaanncceess  tthhaatt  aallllooww  rreeccoorrddiinngg  ffrroomm  

1166  ttoo  4488  nneettwwoorrkkss  ssiimmuullttaanneeoouussllyy  mmuusstt  bbee  

ssuuppppoorrtteedd  ttoo  aassssuurree  tthhaatt  tthhee  kkeeyy  tteecchhnnoollooggiieess  

eemmeerrggee  iinn  tthhee  UUSS.. 
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Donation Categories 
 

Category 1. General Support 
Donations are used for general lab supplies, student assistant hourly wages, and electronics or 
fine mechanics repair or construction. This category gives the lab maximum flexibility. 
 
Category 2. Targeted Donations 
Donations support specific research of interest to the donor.  This includes investigations on 
neurotoxicity, pharmacology, toxicology, and pancreatic tissue. Focus on construction of novel 
research instruments, specific neurological diseases, impact trauma with associated recovery 
methods, and pain suppression with pulsed magnetic fields is also feasible. 
 
Category 3. New Research Directions 
The CNNS lab can be diverse in its research and many new research directions lie within the 
capabilities of the Center.  Category 3 donations allow a sponsor to focus on new research 
areas of interest to the sponsor. (Requires approval from Advisory Committee.) 
 
Category 4. Scholarships 
Sponsors may generate scholarships in their name, or the name of their company, for general 
undergraduate student support or for specific graduate research projects. 

 
 

 
Sponsor Benefits 

 

 Participation in an emerging company. 
 

 Participation in patents. 
 

 Honorable mention in publications, press interviews, and at conferences. 
 

 Lab visits and participation in research, if desired. 
 

 University recognition. 
 

 Optional Advisory Committee membership. 
 

 Quarterly updates on research progress. 

 
 

For more information please call or e-mail 

Professor Guenter W, Gross (Director, CNNS) 
Office:  972.565.3615 
Cell:     972.300.3525 

e-mail: gwgross@unt.edu 
 

Or visit the CNNS labs on appointment.
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CNNS History 
 

The small neuronal network is one of the least explored, yet profoundly important 
organizational unit in neuroscience.  It holds the secrets of pattern generation, recognition, and 
storage (the mechanism underlying behavior), of neurobiological fault tolerance, and of 
pharmacologic and toxic response mechanisms. 
 
The CNNS at the University of North Texas has pioneered research methods that allow 
exploration of these network phenomena. Dr. Gross was the first researcher to record neuronal 
signals with substrate integrated microelectrode arrays1 and held the first patent in this area7.  
The CNNS was stablished in 1987 with large grants from the Texas Advanced Technology 
Program and the Communities Foundation of Texas, made possible through Dallas developer 
W. W. Caruth, Jr.  with a focus on facilitating transdisciplinary studies of the self-organization 
and electrophysiological dynamics of mammalian networks in cell culture.  In 1996, Matsushita 
Electric (Panasonic, Japan) purchased world-wide, non-exclusive rights to this patent.  
 
The mission of the CNNS is pursued with a unique experimental strategy: the monitoring of 
networks growing on arrays of substrate integrated, photoetched microelectrode arrays 
(MEAs), a method largely pioneered at UNT.  The CNNS has international visibility because its 
pioneering efforts1, 2 , the introduction of transparent metal conductors to electrophysiology3, 
and early as well as ongoing efforts to use MEA systems as reliable biosensors for 
pharmacology, toxicology, and drug development 4,5.  MEA technology is now used world-wide 
and an international conference is held every two years.  
 

Versatility of MEA Applications 
 
The MEA methodology is not limited to the nervous system but can be expanded to studies of 
cardiac tissue and glandular tissue (which are also electrically active). Powerful in vitro 
investigations can be initiated in the areas of Alzheimer's and Parkinson's disease states, as 
well as functional and cellular toxicity of gland cells (such as pancreatic tissue).  The 
neurotoxicity of the cancer drug Cisplatin and protection by D-Methionine has recently been 
investigated and published.6 
 
The combination of optical and electrophysiological observations in an isolated and chemically 
defined environment (not possible in animals), represents a unique and presently not yet fully 
implemented research tool of considerable promise. 
 

 
 

(1) Gross, G.W.,  Rieske, E.,  Kreutzberg, G.W. and Meyer, A.  (l977).   A new fixed-array multimicroelectrode system designed for 
long-term monitoring of extracellular single unit neuronal activity in vitro.  Neurosci. Lett.  6:  101-105. 

(2) Gross, G.W.  (l979).  Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multi-microelectrode 
surface. IEEEE Trans.  Biomed. Eng. BME-26:  273-279. 

(3) Gross, G.W., Wen, W. and Lin, J.  (l985).  Transparent indium-tin oxide patterns for extracellular, multisite recording in neuronal 
cultures.  J. Neurosci. Meth. 15:  243-252.                                                                                                                                   

(4) Gross, G.W. and Pancrazio, J.P.P.  (2007) Neuronal Network Biosensors. In: Smart Biosensor Technology (G.K. Knopf and A.S. 
Bassi, eds), Taylor and Francis Publishers, CRC Press.pp 177-201. 

(5)  Gross GW (2011) Multielectrode Arrays. Scholarpedia, 6(3): 5749 
(6) Gopal KV, Wu C, Shresta B, Campbell KCM, Moore EJ, Gross GW (2012) D-methionine protects against cisplatin-induced 

 neurotoxicity in cortical networks.  Neurotoxicology and Teratology, Volume 34, Issue 5,  495-504.                                                 
(7) P  27  41  638.2 ; (U.S patent (7) 4,231,660 ) Nov. 1979. Microscope slide with electrode arrangements for cell study and method 

 for its construction. G..W. Gross, A. Meyer, E. Remy, E. Rieske , 
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Dormant Collaborations Awaiting Funding 
 

Southern Methodist University, Departments of Electrical and Mechanical Engineering 
       Prof. Marc Christensen, Prof. Volkan Otugen 
 

University of Texas at Dallas, Department of Material Science:      Prof. Duncan Macfarlane 
 

Santa Fe Institute , New Mexico      Dr. Luis Bettencourt; 
 

Los Alamos National Laboratory:                                  Dr. Michael Ham 
 

Research Support since 1987: $6,757,759 
 

A. State of Texas ($1,644,671) 
Advanced Research and Technology Grant 
 
B. Federal Grants  ($4,728,636) 
NSF, NIH, DARPA, Los Alamos National Laboratory 
 
C. Foundation Support (1,237,326) 
Communities & Hillcrest Foundations of Dallas 
 
D. Industrial Support:  ($284,452) 
Sandoz Inc. (Basel), Plexon Inc. (Dallas) 
 
E. Endowments: ($100,000) 
Charles and Josephine Bowen Memorial Endowment for Neuroscience Research. 
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 Science Research Building (SRB) Room  248 

The Center houses a modest photolithography facility that fabricates microelectrode arrays 
(MEAs) with line widths of 6 - 8 um.  Patterns are etched into sputtered indium-tin oxide (ITO) on 
barrier glass (Applied Films Corp., Boulder, CO).  The following MEA designs are being 
produced: 
 
1.  M- 3: 64 microelectrodes arranged in 4 rows and 16 columns with lateral spacing of 40  
  um and vertical spacing (between rows) of 200 um. 
 
2. M- 4: 64 microelectrodes arranged on an 8 x 8 matrix with equal spacing of 150 um. 
 
3. M- 5: 64 microelectrodes forming two separate recording areas (32 electrodes each)  
  with 150 um equidistant spacing. 
 
4. M- 6: 64 microelectrodes arranged in 3 recording areas served by 16 electrodes in each 
area with linear interconnecting paths covered by 8 electrodes each. 
 
5. M- 8: 256 microelectrodes arranged as 8 separate recording areas served by 32  
  microelectrodes each. 
 
6. M-8.256 Single network configuration with 256 recording electrodes using the same plate  
  dimensions and amplifier contacts as MMEP-8  
 
M- 3 to 6 consist of 5x5 cm glass wafers, 1 mm thick with identical amplifier contact finger layout. 
MMEP 8 is an 8 x 10.5 cm glass plate with a very dense contact finger design (300 um width and 
300 um pitch).  
 

 
 

We are using optically flat glass plates, together with transparent conductors (indium-tin oxide), to assure 
high magnification phase contrast optical access during recording. This allows monitoring of cell stress, 
observation of circuitry, and discovery of bacterial contamination that can influence results. 

  
Ahmet Ors, MEA Fabrication Technician 
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SSttaannddaarrdd  CCNNNNSS  MMEEAAss    

  

NNeeww  ddeessiiggnnss  ffoorr  rreeggeenneerraattiioonn  aanndd  HHTTSS  ((hhiigghh  

tthhrroouugghhppuutt  ssccrreeeenniinngg))  

MMIICCRROOEELLEECCTTRROODDEE    AARRRRAAYYSS    

FFAABBRRIICCAATTEEDD    aatt    UUNNTT  

Plates A to D measure 50 x 50 x 1.1 mm. 

Amplifier edge contacts are the same for 

all these arrays (32, each side).               

(A, B) M - 4  with 64 conductors 

terminating in a 1 mm
2
 recording area in 

an 8 x 8 matrix .  Electrodes are spaced 

equidistant at 150 m. Impedance 

@1kHz: 0.8 - 1 megohms.                        

(C) M-5. Electrode array plate featuring 

two separate recording islands with 32 

microelectrodes each.  Center-to-center 

distance: 2.24 cm; electrode spacing: 

200 m.  Dashed circles indicate location 

of O-ring after chamber assembly. 

Cruciform electrodes increase the 

recording probability in low-density 

cultures (D, E, F).  

Below: 8-network array plate (90 x 56 x 

1.1 mm) served by 32 microelectrodes 

per recording area (256 total).  Amplifier 

contact fingers: 300 m; pitch of 300 m.  

Designed for high throughput, parallel 

multi-network assays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 mm 

5 cm 

DDRRGG  

ssppiinnaall  

ccoorrdd  

mmuussccllee  

Above:  M-6 with three recording areas 

connected by two conduits of 8 electrodes 

each.   For co-cultures of different tissues, 

regeneration studies, and studies of system 

dynamics.     

G 

9 cm 

88  nneettwwoorrkk      

225566  eelleeccttrrooddee  

aarrrraayy                        

((3322  EE  eeaacchh))  

CCoonnttaacctt  ffiinnggeerr  

wwiiddtthh::  330000  mm  

PPiittcchh  330000  mm          

5.6 cm 

H 



UNIVERSITY of NORTH TEXAS    Center for Network Neuroscience  

 

14 
 
 

256-electrode (4 x 64) MEA for theoretical studies of large networks 

 

 

 

 

 

 

 

 

M-4R 

 

 

 

 

 

 

 

 

 

 

 

 

M-4R:  64-electrode array designed for Cornell University Med. Ctr., New York                                                     

(Dr. Sheila Nirenberg; studies of vertebrate retina)  

Electrode spacing: 200 
micrometer (um)                   
Field separation (circles): 
3.2 mm 

Edge contacts: 300 um;                         
Pitch 300 um  

 

 

   GND 

 

 

 

   GND 

0.6 mm 

Shallow (2 um deep) craters 

produced by single laser 

shots into the ITO terminal 

pads causing pressure 

rupture of circular insulation 

material discs. 

Description:  Transparent ITO conductors:    thickness: 1200 A;   width: 6 micrometer (um) 
terminal pads: 18 um x 18 um;   de-insulation (recording) crater: 25 um diam; 
insulation material: methyltrimethoxysilane;    insulation thickness: 2 um 
impedance after gold plating * : 1 megOhm        * picture shows MEA before gold plating 
Electrode terminal spacing: 70um (lateral and vertical) 
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Recording Chamber Development 

With the support of a State of Texas "Advanced Technology" grant, the CNNS developed a 

variety of recording chambers that allow continual optical monitoring during electrophysiological 

recording and greatly facilitate test compound additions medium changes via Luer ports in the 

stainless steel chamber block.  In all cases, 1 mm diameter medium entrance and exit ports are 

located inside the O-ring proper.   

 

 

 

 

 

 

 

 

 

 

These chambers, if combined with a gas flow (10% CO2 in air, 10 ml/min) and gentle water 

injection to compensate for evaporation (infusion pump, ~50 ul/hr) form highly cost-effective 

mini-incubators on the microscope stage. Luer connections provide access to the medium 

inside the O-ring for test compound additions, medium changes, and water injection (for 

maintaining constant medium osmolarities).  

Closed Circulation Chambers: Addition of glass or quartz cover glass to a recessed area at the 

bottom of the chamber block converts the open chamber into a closed chamber. 

 

 

 

 

M-5 dual network chamber block 
M-5 bottom showing alternate 

O-ring configuration.  

Assembled M-5 chamber with base 

plate, heater power resistors, and 

heated cap (to prevent condensation) 

and allow continual observation with 

inverted microscopes. 

Assembled             

M-4 chamber with             

base plate power 

resistors, and 

circular heated cap. 

 Life-support system for cell culture 

chambers (bottom middle). Line 1: 10% 

CO2 + 90% air supply for pH stability in the 

medium reservoir. Line 2: medium supply. 

Line 3: sterile water supply for osmolarity 

control in the medium reservoir. CO2-

impermeable Pharmed® tubing is used.  

The supply medium is maintained between 

39 and 40 °C to eliminate gas bubble 

formation in the culture chamber 

maintained at 35°C.                                                     

 

 

10% CO2     

in air 

Gross and Schwalm, 1994; Meyer, Wolf, and Gross (2009) 
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 Growing nerve cells 

in vitro (outside the 

animal in cell 

culture) is difficult. 

Growing them on  

microelectrode 

arrays, assure 

spontaneous 

activity, assure 

pharmacological 

responsiveness, 

and maintain such 

networks 

functionally active 

for several months 

is daunting.  

The CNNS has 33 

years of experience 

in neuronal cell 

culture and can be 

counted as one of 

the top laboratories 

world-wide in this 

area. 

 

20 m

 

20 m

 

        
   

Neurofilament antibody stain, mouse  cortex 
Bodian  stain 

Bodian  stain, 

mouse spinal cord 
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The CNNS has a well-equipped cell culture facility (600 ft
2  

) with 6 incubators, one 
biohazard hood, two laminar flow hoods, one inverted microscope with camera and 
monitor, 2 pH meters, and 2 osmometers.  

 
A B C 

Left:  Cell dissociation and 
seeding onto MEAs. 

Graduate students Jason 
Gibson and Nicole Calderon 
at laminar flow hood with 
undergraduate HHMI* 
stipend recipient, Son Le, 
standing in support.                  
* HHMI: Howard Hughes Medical 
Institute 

 

Above:  Cell culture technician Jennifer 
Mcanally performing biweekly feedings of 
cultures (1/2 medium changes). 

Left: Sterile culture room during UV exposure. 

 

Above:  Living neurons (embryonic mouse frontal cortex) after 30-40 days in culture, growing 
on MEA surfaces.  Arrows in (A) point to recording sites. Panel (C) shows a multipolar neuron 
before and after 100uM exposure to zinc acetate. The right panel reveals necrosis and cell 
death.  Phase contrast microscopy of low density cultures shows remarkable detail of neurons 
and circuitry in the living state. 
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Although a low electrode impedance is desirable, the most important factor determining high 

signal-to-noise ratios is cell-electrode coupling.  The neuronal compartment that is generating 

action potentials (mostly axons, but cell bodies and dendrites also participate) must be in close 

proximity to the metal-electrolyte interface that responds to the extremely minute ionic currents 

produced by action potentials.  The interface forms what is called a "Helmholtz Double Layer" 

where ions are found in a less random state than in the bulk medium. Together with electrons in 

the metal, this area forms a capacitor. A slight disturbance of the Helmholtz layer by ionic 

currents resulting from action potentials produced by local nerve cells, now causes a transient 

movement of electrons in the metal conductors leading away from the recording site to the 

amplifier. Those signals are in the microvolt range, but can be detected and amplified with 

appropriate equipment. 

 

The electrode surface must be decorated with adhesion 

molecules such as poly-D-lysine and laminin. On this surface glia 

cells (non-neuronal components of neural tissue) form a "carpet" 

on which nerve cells (neurons) reside.  Once established, such 

networks can survive in vitro (i.e. in the incubator for over 6 

months.  But it takes constant care: biweekly feeding (medium 

removal and additions), maintenance of  osmolarities (proper 

water content of the medium that can be lost by evaporation), 

and maintenance of strict sterility. 

  

Stretching 
of  AP   K+ 
phase by  
4-amino 
pyridine. 
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Methods of obtaining time stamp data from nerve cell networks growing on microelec-trode arrays (MEAs).  

(A) 64-electrode MEA with 32 amplifier contacts at either side.  All con-ductors terminate in a 1 mm
2
 

recording area in the center.  (B) Recording chamber on microscope stage with ampli-fiers and life support 

(10% CO2 in air, 10 ml/min, temperature conrol, and osmolarity mainte-nance).  (C) Low density net-work 

on microelectrode array consisting of all cell types nor-mally found in the parent tissue.  Insert enlarges 

(D) Action potential wave shapes obtained with 32 

digital signal processors.  A single channel allows separation of four different wavewshapes. (E) Digitized 

time stamps obtained from threshold crossing of action potential signals.  Two network burst are shown 

with coordinated   activity.  Note that the large signals (D) also allow waveshape analysis. 

 

 

 

 

 

 

 

Network research and application require the capture of simultaneous 
information from many nerve cells in an ensemble. 

Left: Time stamp 
display (raster) for all 
discriminated units. 
Colors represent 
different units on the 
same electrode (4 
max).  The right panel 
shows discriminated 
waveshapes 

Single Network Assembly and Real Time  Data Acquisition 

& Display 

From Petri dish to assembled chamber in 40 sec 

Chamber on microscope stage 

with preamplifier hookup Geometrically true display of 

electrode pattern and selection of 

electrodes for display. 

Automatic or manual 

thresholding and waveshape 

template selection. Neurons are 

identified and followed based on 

waveshapes.  Up to 4 active 

units can be separated on each 

electrode in real time.  4- kHz 

scan rates gives digitized signals 

with 25 us resolution (Plexon 

Inc.) 

All amplifiers and digitizing as well as display software is 

obtained from Plexon Inc., Dallas, TX. 
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Recording with electrodes outside the neurons (i.e extracellular recording) is non-

invasive and non-destructive. However, the electrical signals are minute: usually only a 

few hundred microvolts in amplitude.  

Multichannel Recording Workstation 

The CNNS has 4 operations workstations. Each 

station consists of: 

1. An inverted microscope with analog and digital 

cameras.                                     

2. A Plexon Inc. MNAP system for 64 channel 

parallel recording, real time raw and processed 

data displays, digitized data storage.                                                               

3. Network life support micro-incubator system 

(CNNS development) that features: (a) 10 % or 

5% CO2 in air for pH maintenance (10 ml/min into 

heated chamber cap), (b)  water evaporation 

compensation (infusion pump, ~50 ul/hr) to 

maintain medium osmolarities; (c) feedback heater control to maintain temperatures to +/- 1 deg 

C.  Osmolarities and pH must be checked manually via 10 ul and 100 ul samples, respectively. 

 

 

 

 

 

 

 

Graduate students Edward Keefer and 
Alexandra Voss (Univ, of Rostock, 
Germany) at workstation 1 in 2003.  
Both are now established researchers in 
industry (Plexon Inc., Dallas and 
Neuroproof, Rostock). Dr. Keefer 
received a postdoctoral position at the 
prestigious Neuroscience Institute in La 
Jolla, CA, before returning to Texas. 

Undergraduate students David Smith and 
Son Le monitoring multichannel recording 
and culture life support equipment during a 
quinolinic acid toxicity experiment. 
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If you want to write your name into a red blood cell, that is 
possible (if your name is short).  The human red blood cells to the 
left are only 6 micrometer in diameter and show laser perforations 
of about 1 micrometer.  Such a precision is achieved by firing a 
pulsed near-UV nitrogen laser through a microscope equipped 
with quartz optics.  The CNNS has one of these rare systems. It 
was built by BTG, GmbH of Munich Germany, sold to the Sandoz 
Corporation in Basel Switzerland, and finally donated to the 
CNNS. The system is used for cell surgery to study trauma, 
simplify networks to explore fault tolerance by selective 
elimination of cells and/or their connections, and explore photonic 
stimulation of nerve cells.  

  

 

 

 

 

 
 

 

 

 

Such targeted, controlled injuries allow quantitative studies of cell survival and 
exploration of new pharmacological interventions. Laser surgery also has theoretical 
significance as it can be combined with multichannel recording from networks on 
microelectrode arrays (MEAs). 

Laser microbeam system operational at the CNNS.  The near 

UV nitrogen work laser (337 nm) and the HeNe positioning laser 

are aligned collinearly, reflected into a Leitz Orthoplan 

microscope, and focused onto the specimen in special recording 

chambers via quartz objectives. A x32 objective can produce a 

minimum focus of 2.3 m at an energy density of approximately 3 

J/m
2
.  Neurite transections can be achieved via substrate 

vaporization shock waves, or more gently via multiple shots that 

probably cause mitochondrial disruption due to specific 

absorption by NADH and NADPH, Ca++ release, disruption of the 

cytoskeleton and gradual process transection. 

A B C 

CELLULAR TRAUMA.  Above: Laser transection of large 

dendrite close to the cell body.  (A) Before transection with 

target laser at arrow. (B & C)  5 & 10 min after transection.  

The target neuron is displaying necrotic cell death.  A smaller 

satellite neuron appears normal.   Left:  Dendritic pruning 100 

um from cell body (circle). 
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Direct Photonic Stimulation 

Electrical stimulation of neural tissue has many drawbacks in that it is not highly localizable, is 

affected by electromagnetic interference (EMI), and produces undesirable biochemical effects at 

the metal/electrolyte interfaces.  Both the military via DARPA and the NSF have shown 

increased interest in "biophotonics".  Photonic stimulation will add new dimensions to present 

stimulation methods and may, in the future, dominate the neurostimulation domain.  The reasons 

are: artifact-free stimulation, immunity to electromagnetic interference (EMI), high spatial 

specificity, and the potential for rapid multiplexing of stimulation signals at different wavelengths. 

Compared to electrical stimulation, chemical reactions may also be minimized.      

Photonic stimulation  phenomena have not yet been explored systematically across 

wavelengths ranging from the infrared to the UV.  The combination of array recording from 

networks in vitro with laser stimulation provides a powerful tool for the systematic, quantitative 

exploration of stimulation efficacy and stimulation limits at all wavelengths.   

       

 

 

 

 

 

Network population burst  

(arrow) in response  to a 

single laser pulse.  Both 

inhibition and extensive 

excitation are seen (see 

enlarged panel at the far 

right).  Up to 4 different 

waveshapes, representing 

separate neurons can be 

discriminated in real time 

on one electrode resulting 

in the different colors in the 

raster display. The raster 

display consists of time 

stamps (25 microsec 

resolution) that are conver-

ted to tick marks on the 

computer screen (Plexon 

Inc., Dallas).  The 

challenge will be to estab-

lish damage thresholds 

and develop methods 

allowing routine, repetitive 

stimulation without 

crossing the damage 

threshold. 

The techniques described allow transitions from reversible, repetitive 

stimulation to cell process transection and surgical elimination of 

specific neurons simply by increasing the laser output power.                              

UNPUBLISHED DATA 

 

       Number of laser pulses   
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 to Pharmacology, 

Toxicology, and Drug Development 

A remarkably reliable and specific sensitivity to compound additions to the medium!! 

The biochemical sensitivity of spontaneously active nerve cell networks on MEAs is 
shown above with 11 different pharmacological substances.  Each application result in a reliable 
pattern change expressed here as clusters of burst rate plotted against burst duration. The native 
raster plot and that for a much more organized burst oscillation state (induced by blocking all 
synapses except NMDA synapses) are shown in the panels to the right (see also tight cluster, 
State 7 in A).  State 11 at different Ca++ concentrations is expanded in B.  

Keefer, E.W., Gramowski, A., and Gross, G.W. (2001c) NMDA receptor dependent periodic oscillations in cultured 
spinal cord networks.  J. Neurophysiol. 86: 3030-3042. 
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under 40 uM bicuculline 

 

The Primary Experimental Display::                                                                                                                
Network spike and burst production  

(averaged across all discriminated units per minute) 

 

  

Muscimol is a deadly 

but reversible toxin 

derived from the 

toadstool mushroom. It 

mimics the action of 

the inhibitory 

transmitter GABA and 

reduces activity in a 

concentration-depen-

dent manner (in 

animals and in 

cultured networks). 

Bursts are clusters of high frequency action 

potentials that play a major role in brain 

function ranging from memory formation to 

precise muscle movement.  For quantification, 

we integrate bursts, which provides measurable 

properties such as burst duration (bd), burst 

period (bp), and integrated burst 

amplitude.(ba). 

 

 

One of the most 
difficult problems in 
neuroscience is the 
quantification of the 
myriad of action poten-
tial (AP) patterns.  The 
panel to the left shows 
a one minute segment 
of network activity from 
only 24 discriminated 
neurons.  Such a 
pattern cannot be 
expressed mathemat-
ically without simpli-
fication. Fortunately 
applications to phar-
macology and 
toxicology allow the 
condensing of a 
complex on-minute 
pattern into one data 
point. 
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An Example of a Practical Application in Pharmacology and Toxicology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One experiment with one network on an MEA provided rapid screening data on the new 

compound in 220 min:  (1) desired efficacy at 25 and 50 uM, (2) inhibition at 75 uM, and 

(3) dangerous activity loss between 100 and 125 uM, (4) reversibility.  Such information 

can make drug development rapid and cost effective with a minim al use of experimental 

animals.   Keefer, E.W., Norton, S.J., Boyle, N.A.J., Talesa, V., and Gross, G.W. (2001)  NeuroToxicology 22: 3-12. 

NOVEL ACHE Blockers 
     AChE Inhibition.   Inhibit. Excitat. Inhibit. Reversi- No of 
     Const Ki  (M) Type   bility experiments 
Ch

+
O-CO-S(CH2)2S-CO-OCh

+               
1.0x10

-6  
Mixed 10  R 2 

Ch
+
O-CO-S(CH2)3S-CO-OCh

+               
1.4x10

-6  
         Mixed 50  R 3 

Ch
+
O-CO-S(CH2)4S-CO-OCh

+               
1.0x10

-6                
Mixed 10  R 2 

Ch
+
O-CO-S(CH2)5S-CO-OCh

+               
1.4x10

-6  
       Mixed NE NE -- 2 

Ch
+
O-CO-S(CH2)6S-CO-OCh

+               
1.4x10

-6  
Mixed  350 I 2

 

DMEA
+
O-CO-S(CH2)4S-CO-DMEA

+ 
3.6x10

-7      
Mixed

 
      25   125 R 3 

DMEA
+
O-CO-S(CH2)6S-CO-DMEA

+  
5.0x10

-7
   Mixed  200 I 2 

NE: no effect;  R: reversible inhibition (2 medium changes); I: irreversible inhibition (3 medium changes and 2 hr 
wait)  
Ch

+
O- represents choline residues, DMEA

+
- represents N,N-dimethylethanolamine residues. 

    Paper published:  Keefer et al, 2001                                                    

7 weak AChE blockers designed for 

alleviation of Alzheimer’s syndrome were 

newly synthesized at the University of 

Perugia, Italy (Prof. Vincenzo Talesa) and 

tested at the CNNS. 

The biochemical data confirmed binding to 

the AChE enzyme (acetyl cholinesterase) 

However, such binding does not reveal 

other binding sites for compounds that had 

never existed before on this planet! 

Functional Testing is necessary. 

Screening with networks on MEAs 

saves time, money, and animals.  
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Network spike and burst production   
as a function of time.  Each dot 
represents a one minute average.  
Spontaneous activity between 0 and 25 
min (Reference) is followed by a near 
doubling of the activity in response to 25 

M of test substance. No further increase 

occurs at 50 uM.  At 75 M, the activity 
drops 30% below reference and at 125 

M all activity is lost. A single medium 
changes restores the original activity. 

Two of the 7 substances 
were toxic and killed the 
networks.  One was 
inhibitory, but reversible, 
and 3 were excitatory. Of 
those three, one showed 
the expected response. 
(see below) 
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The zinc ion is a necessary dietary component and is required by 

numerous biochemical reactions in the nanomolar range (10-9 M). 

HOWEVER, if the concentration is increased by a factor of 1,000 zinc becomes toxic in the 

micromolar range.  Zinc is found everywhere in our environment: dental adhesives, vitamin 

supplements, lipstick, baby powder, rubber tires, waste water, and sunscreen (a large amount if 

applied to 80% of the body). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________________________ 

Parviz, M. and Gross, G.W.  (2007)  Quantification of zinc toxicity using neuronal networks on microelectrode arrays.   

NeuroToxicology 28: 520-531.  

 

EEnnvviirroonnmmeennttaall  aanndd  IInndduussttrriiaall  TTooxxiiccoollooggyy 

ZZIINNCC 
 

200 uM zinc acetate causes                                              
excitation followed by 
irreversible                                                      
activity loss                                                                                        
.  
Morphological observations                                                     
during recording show cell body 
swelling and eventual necrosis.                   
(compare B1 and B5 in the 
figure below). 

Maryam Parviz, PhD research 
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Botulinum Neurotoxin (BoNT) 

Present methods for testing botulinium  toxins (A - E) are time-consuming, expensive, and 

require a large number of aimals. Because BoNT does not cross the blood-brain barrier, the 

primary focus has been on using peripheral nervous system cholinergic synapses.  However, all 

synapses are affected by BoNT because they all use identical proteins (snap 25) for exocytosis.  

It is this molecule that is affected by BoNT after it enters synapses.  Networks derived from 

cortical tissue can be effectively used for BoNT research, with higher accuracy, less time, and at 

a much reduced cost.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Botulinum toxin stops neve cell function by entering synapses and interfering with the fusion of 

vesicles (containing neurotransmitters) with the membrane. This blocks the process of 

"excocytosis" and prevents most cell-cell communication.  The toxin does not kill cells, but 

without cell-cell communication all vital functions stop and the organism dies. This toxin is one of 

the most lethal substances found in nature. 

 

Responses to botulinum toxin A 

Dual network array experiment  

Matrix A: 100 ng/ml (660 pM)                       
Matrix B:   50 ng/ml (320 pM) 

Time to 50% activity decay:          

100 ng/ml: 1.9 h                                                       
50 ng/ml:   2.9 h  

Real-time computer display (CNNS 
NACTAN program). 

Recording chamber 
assembly for the dual 
network array. Shown 
with heated cap and 
power resistor plate 
heaters. 

  

Matrix “A” 

100 ng/ml 

Matrix “B” 

50 ng/ml 

           Botulinum Toxin-A 

Reference“A” 

Reference“B
” 

   
Nativ

e 

  Volume 
adjustment 

to 1 ml 

 

Diagram of a chemical synaptic 

terminal. It is the most complex 

area of a nerve cell. 

Presynaptic Region 

Postsynaptic Region 
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A direct and simple test for protection of nerve cells by antisera to botulinum toxin* 

 

 

 

 

 

 

 

 

SPINAL CORD 

Network activity suppression after 
addition of  25 ng/ml botulinum toxin. 
The graph shows the average 
network spike production per minute 
as a function of time derived from 37 
discriminated units. Activity changes 
are determined as percent decreases 
relative to the native activity 
(Reference). Graphs (below) allow 
prediction of when activity will have 
decayed by 10, 50, or 90%  from 
reference as a function of BoNT 
concentration. 

 

 ~100,000 mice are being used                   
per year just for antitoxin research                           

(Fort Detrick, MD) 

Pancrazio JP, Keefer E, Gopal K, Gross GW (2014) Botulinum Toxin 

Suppression of CNS Network Activity In Vitro. Journal of Toxicology, 

vol. 2014, Article ID 732913, 10 pages. doi:10.1155/2014/732913. 

 

10 h 
20 h 

 

 

S     + 50 ng/ml  BoNT-A (WAKO stock 1.3) B     100 ng/ml   

T 

10 h                            20 h 

  250 ng/ml             200 ng/ml 100 ng/ml  

   

50 ng/ml  

   

 

Normal time of activity loss 

   10 hrs    20 hrs    30 hrs    40 hrs 

Protection of network activity with antisera pretreatment.   The network maintained spontaneous activity for 
40 hrs despite increases in BoNT concentrations from 100 to 200 ng/ml.  Activity was finally stopped by 250 
ng/ml.  Without the serum, 90% of the activity would have been lost at 300 min. (white arrow).     Codes:  B: 
40 uM bicuculline; S: application of antiserum at 112 min; T: time base switch from 1 min to 2 min. 50 ng/ml 
BoNT was added 20 min after application of antiserum. 
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The culture, life support, and multichannel recording methods have evolved to a level that allows 

the determination of dissociation constants (i.e. a measurement of molecular binding strength to 

a particular receptor).  The approach uses the shifting of concentration response curves (shown 

below) to higher concentrations by the action of antagonists  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QQuuaannttiittaattiivvee  PPhhaarrmmaaccoollooggyy::                                                                                                                                                                                                          

DDeetteerrmmiinnaattiioonn  ooff  DDiissssoocciiaattiioonn  CCoonnssttaannttss  

                                                                                            

  CCaallccuullaattiioonn  ooff  ddiissssoocciiaattiioonn  ccoonnssttaannttss  uussiinngg  nneettwwoorrkk  aaccttiivviittyy    
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  Gabazine Bicuculline TMPP   

pA2  (-log KB) 6.64  6.21  5.40   

KB    (X- intercept)  0.23 M  0.61 M 3.98 M 
R2    (linear fit) 0.98  0.99  0.99   

 

 
 

If the agonist and antagonist are competitive, the 

Schild plot will have a slope of 1.0 and the X 

intercept will equal the logarithm of the Kb of the 

antagonist.  

Sabnam Rijal-Oli in her 

MS research shifted the 

dose responses of 

muscimol to the right 

with the antagonists 

bicuculline, gabazine, 

and trimethylolpropane 

phosphate.  She was 

able to calculate the 

dissociation constants  

for all three antagonists. 

Shild plot (left) and numerical results (table 

below).  A comparison with other methods in the 

literature is given on the next page. 

Concentration of muscimol (microMolar) 
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Comparison with data from established preparations 

   

Of the many methods used for the determination of binding constants, which will be 

considered most accurate and reliable? 

A strong advantage of this technique is that it determines binding constants in the 

receptors' native environment, in the presence of all the normal cell types, 

neuromodulators, transmitters, and while the system is in a functional, spontaneously 

active state.  

___________________________________________________________________________________________ 

Rijal-Oli, S. and Gross, G.W. (2008) Determination of dissociation constants using spontaneous neuronal network 

activity recorded with microelectrode arrays in vitro.    Journal of Neuroscience Methods 173 (2008) 183–192. 

Compound KB (µM) pA2 Animal Tissue References 

Bicuculline 0.62 6.21 Mouse 

networks 

FC UNT/CNNS  study 

Bicuculline 1.02 5.9 Xenopus  

laevis  

oocytes Smart et al., J. 

Neuropharmacol, 1996 

Bicuculline 1.0 6.0 Rat Medial septal slice Schneggenburger et al., J. 

Physiol, 1992 

Bicuculline 

methoidodide 

1.2 5.92 Rat Cerebellar slices Hussain et al., Gen 

Pharmacol, 1990 

Bicuuclline 

methochloride 

0.79 6.10 Rat Hippocamplal slices Kemp et al., Br.J Pharmacol, 

1986 

Bicuculline 1.12  5.98 Rat cuneate nucleus slices Simmonds et al., Eur J 

Pharmacol, 1982 

Bicuculline 1.12 5.98 Rat Dorsal funiculus fibres Simmonds, MA.Eur. 

J.Pharmacol, 1982 

Bicuculline 

methochloride 

1.3 5.88 Rat Dorsal funiculus fibers Simmonds, MA.Eur. 

J.Pharmacol, 1982 

Bicuculline 4.4 5.35 Rat rat cuneate nucleus 

slices 

Simmonds MA, Br.J. 

Pharmacol, 1978 

Bicuculline 1.7 5.76 Rat  Ueno et al., J. Neurosci, 

1997 
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Methods for High Throughput Toxicity and Neuroactivity Screening 

Rationale for High Throughput Screening 

Of the thousands of chemicals distributed in international commerce, 93% are missing one (or 

more) set of internationally agreed upon tests, and 43% are missing all of these tests1. A similar 

problem exists with pharmaceuticals and new materials, such as nanotubes and C-60 fullerenes. 

The commercial ability to produce new compounds has far exceeded the ability to test them for 

safety. The development and commercialization of new high throughput physiological screening 

platforms is not only inevitable, it is urgent.  

 

 

 

 

 

 

 

 

 

 

A  workshop (ICCVAM/NICEATM/ECVAM, Scientific Workshop on Alternative Methods to 

Refine, Reduce, and Replace the Mouse LD50 Assay for Botulinum Toxin Testing, Silver Springs, 

MD., 13-14 Nov 2006) emphasized the need for replacing the mouse LD50 assay with a more 

efficient safety testing technology.  The conference reviewed the existing state-of-the-science 

                                                           
 

 

1 culture well (1 network) 8 culture wells (8 networks) 

development 

The 96-well plate has alternate rows of 8 wells 

each with arrays of 32 microelectrodes. Adjacent 

rows of wells  have 32 contact pads for VLSI pre-

amplifiers that will be inserted in each well. A bus 

bar carries signals to output connectors.  In this 

manner, a standard 96 well plate can be used in 

a robotic system with 48 networks providing 

information in parallel. 

Issued US Patent "MULTINETWORK NERVE 

CELL ASSAY PLATFORM WITH PARALLEL 

RECORDING CAPABILITY" UNT Ref: 10GG-

2005-09 - ATTY Ref: UNTD-0010WO/US 

(122302.119).                 June 2013 

 

Pre-amplifier 

contact well 

network well 

96-well plate with 48 

culture wells (48 networks) 

Bus bar: 4 x 32 

signal lines 

*(EPA; Chemical Information Collection; Chemical Hazard Data Availability 

Study, June 23, 2004) 
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and current knowledge of alternative methods targeted to reduce, replace, and refine (less pain 

and distress) the use of mice for botulinum toxin testing and identify priorities for research, 

development, and validation efforts needed to advance the use of alternative methods. Neuronal 

networks on microelectrode arrays provide such an alternative method. One pregnant mouse 

with 12 embryos can provide neuronal cell pools that allow the seeding of up to 1,000 networks 

(if most regions of the central nervous system are used).  This translates to1,000 assays; a 

tissue yield that is unprecedented. 

Based on 30 years of research activities with neuronal networks on microelectrode arrays, 

faculty and staff that make up the Center for Network Neuroscience (CNNS) have the 

experience, know-how, core organization, international visibility, and technical contacts to 

address the challenges of working with a large number of parallel networks in the development of 

advanced multipurpose platforms for basic and applied neuroscience research, as well as for 

routine industrial compound screening.   

 

 

 

 

 

No single test system can provide all the answers.                                                   
However, some systems provide more simultaneous information than others. 

NEURONAL NETWORKS on MICROELECTRODE ARRAYS report                  

ccyyttoottooxxiicc,,  nneeuurroottooxxiicc,,  aanndd  ffuunnccttiioonnaall  eeffffeeccttss..                                                                  
TThhiiss  ppllaattffoorrmm  pprroovviiddeess  hhiigghh  ccoonntteenntt  ddaattaa..  CCoommbbiinneedd  wwiitthh  hhiigghh  tthhrroouugghhppuutt  tteecchhnnoollooggyy  iitt  mmaayy  

bbeeccoommee  tthhee  lleeaaddiinngg  ssccrreeeenniinngg  ppllaattffoorrmm  iinn  ttooxxiiccoollooggyy,,  pphhaarrmmaaccoollooggyy,,  aanndd  ddrruugg  ddeevveellooppmmeenntt..  

  

 

DEFINITIONS 

CYTOTOXICITY:   death of all types of cells 

NEUROTOXICITY:   death only of neurons  or some subpopulations  of neurons                       
    (eg. Parkinson syndrome) 

FUNCTIONAL TOXICITY:   loss of electrical functions in the absence of neurotoxicity                                               
    (e.g.  tetrodo-toxin; botulinum-toxin) 

CHANGES in NEUROACTIVITY:          
    the influences of ALL medicines and drugs are reflected in the  
    activity changes of networks 

RECEPTOR  REGULATION:  reflected in changes in dose response curves 

SSUUMMMMAARRYY  ooff  PPhhaarrmmaaccoollooggiiccaall  AApppplliiccaattiioonnss 

NNOOTTEE::      IInn  aaddddiittiioonn,,  eelleeccttrriicc,,  mmaaggnneettiicc,,  aanndd  ootthheerr  pphhyyssiiccaall  eexxppoossuurreess  rreeaacchh  ““ttooxxiicc””  lleevveellss  aatt  ssoommee  ddoossee..  

SSuucchh  eexxppoossuurreess  ccaann  bbee  qquuaannttiiffiieedd  iinn  vviittrroo  bbeeffoorree  aanniimmaall  eexxppeerriimmeennttss  ccoommmmeennccee.. 
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CNS 

 

Organizational Levels of the Central Nervous System 

 
Pattern Generation 

Pattern Processing 

Pattern Storage 

Pattern Retrieval 
Pattern Recognition 

Pattern Fault Tolerance 

RReellaattiivvee  AAccccuummuullaatteedd  KKnnoowwlleeddggee  iinn  VVeerrtteebbrraattee  NNeerrvvoouuss  SSyysstteemm  

RReesseeaarrcchh 

 

 

We will not understand information 

processing in the brain until we 

understand pattern processing in 

small networks. 

             Luis Bettencourt, Los Alamos N 
Greg Stephens, Princeton    G.W. Gross, UNT 

 

Michael Ham, Los Alamos 

Jacek Kowalski              
UNT 

Paolo GrigolinI,  UNT      
Center for Complex Systems 

A focus on 

networks             

and                

complex 

systems 

 

Of all the 

organizational 

levels of the 

brain, the 

network level  

is least 

understood. 
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Theoretical constructs of brain function based only on cellular properties face almost 
insurmountable complexities due to the vast number of synaptic constellations and the extremely 
variable morphological influences on temporal and spatial summation of membrane voltage 

fluctuations. It is reasonable to suspect that the small network provides an effective study 
system of population dynamics that does not require detailed knowledge of all cellular 
and synaptic components.  It is now possible to extract vital new information from small 

network growing on microelectrode arrays (MEAs).   

The MEA technology and methodology described in this brochure focuses on such small 
networks of nerve cells.  In vertebrates, neuronal populations and not single neurons may be 
considered the “fundamental processing unit” of the brain.   Basic pattern generation, processing, 
and fault tolerance emerge on the small network level and information processing in neural 
tissue cannot be effectively explored without including such fundamental emerging network 
properties.  

The CNNS has made substantial contributions to Theoretical Neuroscience.  However, 
to cover this area adequately will require another brochure.  

Below are some key publications that reflect our efforts in this important subdomain of 
neuroscience. 

Kowalski, J.M.,  Ansari, A.,  Prueitt, P.,  Dawes, R., and Gross, G.W. (1988)  On synchronization and 
phase locking in strongly coupled systems of planar rotators.  Complex Systems 2: 441-462.  

Kowalski, J.M. and Gross, G.W. (1990)  Coupled relaxational oscillators as a model of spontaneous 
activity in neuronal networks.  Proceedings of the International Joint Conf. on Neural Networks, Paris, 
Vol 1, pp 488-491.   

Kowalski, J.M., Albert, G.L., and Gross, G.W. (1990)  On the asymptotically synchronous chaotic orbits in 
systems of excitable elements.  Physical Review A, 42: 6260-6263. 

Gross, G.W. and Kowalski, J.M. (1991)  Experimental and theoretical analyses of random network 
dynamics.  In: Neural Networks, Concepts, Application and Implementation, Vol. 4 (Antognetti and 
Milutinovic, eds), Prentice Hall, N.J., pp  47-110. 

Kowalski, J.M., Albert, G.L., Rhoades, B.K., and Gross, G.W. (1992)  Neuronal networks with 
spontaneous, correlated bursting activity: theory and simulations.  Neural Networks 5: 805-822. 

Tam, D.C. and Gross, G.W. (1994)  Extraction of dynamical changes in neuronal network circuitries using 
multi-unit spike train analysis.  In:  Enabling Technologies for Cultured Neural Networks (D.A. Stenger 
and T.M. McKenna, eds), Academic Press, N.Y. 

Gross, G.W. and Kowalski, J.M. (1998)  Emergent dynamical properties of biological neuronal ensembles 
and their theoretical interpretation and significance. AIP Conf. Proc. 437: 577-594. 

Gross, G.W. (1998)  Emergent Properties of Self-Organizing Nerve Cell Ensembles in Culture. Proc. of the 
4th Internat. Conf. on Intelligent Materials, Tokyo, Japan. pp 326-329. 

Gross, G.W., Kowalski, J.M. and Rhoades, B.K. (1999)  Spontaneous and evoked oscillations in cultured 
neuronal networks.  In:  Oscillations in Neural Systems (D. Levine, V. Brown, T. Shirey, eds) Erlbaum 
Assoc., N.Y.pp 3-29. 

Gross, G.W. and Kowalski, J.M. (1999)  Origins of activity patterns in self-organizing neuronal networks in 
vitro.  Journal of Intelligent Material Systems and Structures 10: 558-563. 

Turnbull, L. and Gross, G.W. (2005) The string method of burst identification in neuronal spike trains.  J. 
Neurosci. Meth. 145: 23-35. 

Bettencourt L.M, Stephens, G.J., Ham, M., and Gross, G.W. (2007).  Functional structure of cortical 
 neuronal networks grown in vitro.  Physical Reviews E 75, 021915:1-10.  

Ham, M., Bettencourt, L. M., McDaniel, D, and Gross, G.W. (2008).  Spontaneous coordinated activity in 
cultured networks: Analysis of multiple ignition sites, primary circuits, and burst phase delay 
distributions.  J. Computational Neuroscience 24: 346-357.  
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Ham, M.I., Gintautas, V., and Gross, G.W. (2008) Spontaneous coordinated activity in cultured networks: 
Analysis of multiple ignition sites, primary circuits, burst phase delay distributions, and functional 
structures. Proceedings of the 6

th
 International Meeting on Substrate-Integrated Micro Electrode 

Arrays. pp. 29-32. 

 

The mystery of intelligence, behavior, and control of organs - such as the heart and 
muscles- lies in the generation of spatio-temporal patterns of a myriad of electrical 
pulses called "action potentials".  Nerve cell networks, whether inside the organism as 
part of the intact nervous system or outside the animal growing as isolated systems on 
microelectrode arrays (MEAs), are always spontaneously active and form such patterns.   
We can now monitor such patterns but know little about the basic mechanisms that 
generate, shape, store, and trigger such patterns.  

Whether driven by interest in basic neuroscience research or by lucrative 
applications in electronics or computer design, this research area is of 
fundamental importance.    
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Quantification of Damage Thresholds in vitro                                    

and Methods of Recovery Enhancement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite extensive research efforts on TBI the  
 > complexity,  
 > high number of variables out of the control of investigators,  
 > non-standardized data,  
 > and limited quantification,  
have made this research area difficult and frustrating.   
 

This complex pathology requires research on all levels:  
from holistic brain injury to cellular and even synaptic disruption. 
 
 
(Reviews: Chen et al 2009 ; Bruns and Hauser, 2003; Dixon et al.,1987), 

TRAUMATIC BRAIN INJURY is the leading 
cause of death in America between 1-44 
years of age [1].   This includes military 
personnel exposed to blast concussions 
and other head injuries.  5.3 million US 
citizens are living with TBI-related 
disabilities 

TThhee  sseevveerriittyy  ooff  ccoonnsseeqquueenncceess  aanndd  tthhee  eennoorrmmoouuss  ccoosstt  aassssoocciiaatteedd  

wwiitthh  mmeeddiiccaall  ccaarree  aanndd  ssoocciiaall  ddiissrruuppttiioonn  mmaakkee  aacccceelleerraatteedd  rreesseeaarrcchh  

eeffffoorrttss  eesssseennttiiaall  aanndd  uurrggeenntt.. 
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MMIILLDD  BBRRAAIINN  IINNJJUURRYY 
(1)  Physical evidence usually does not exist (standard CTI or MRI scans are not 
sensitive enough).  
 
(2)  The damage is microscopic and causes no bleeding.   
 
(3)  Diffuse axonal damage after minor head injury has been demonstrated                         
 (Povlishock et al., 1983; Greer et al., 2012).   
 
(4) Diffuse brain injury now also includes: 
  inflammatory responses   (Kelley et al. 2007)  & 
  calpain-mediated cytoskeletal changes (McGinn et al.,2009).   

In the animal (or patient), it is extremely difficult to identify mild TBI and link it 
to functional deficits. 

Such investigations are possible in vitro where cellular damage can be linked 
to functional damage and quantified.   

Most important is the ability to study recovery strategies through biochemical 
and pharmacological interventions.    

The highly controlled physical and biochemical environment allows long term 
studies of interventions to enhance recovery.   
 
The exact impact forces causing specific responses may differ between in 
vitro and in situ models, but the recovery from morphological and cellular 
damage as well as the efficacy of interventions can be very effectively 
determined in vitro and should be scalable to the animal model.     
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Methods and Preliminary Data 

  

Assembled MEA in chamber and on 
microscope stage. 

Chamber and base plate disconnected from 
amplifiers and attached to target arm. 

Assembled MEA in flow chamber and 
on microscope stage. 

Network responses to MULTIPLE 
IMPACTS.  The figure to the left 
shows total network activity per 
minute (green trace).  Activity recov-
ers temporarily to within 10% of 
reference, forms a 6 min depression 
at 20% of baseline, and produces a 
new baseline 12% below reference.  
NOTE: This represents activity reduc-
tion and not a loss of channels.  
RAI 3 (~150 g): A short recovery 
peak followed by a 26 minute major 
activity suppression (max. 90%). 
Thereafter, activity recovered to 80% 
of Ref., followed by a slow decay to 
27% of reference over 18 hours  (see 
Insert).   Data: David Smith, 2014. 
*RAI: rapid acceleration injury. 

Prototype ballistic pendulum apparatus 

(BPA). Left arm: target with network in 

recording chamber; right arm: striker.  g-

forces can be estimated form the height 

reached by the target arm (h) caused by the 

peak kinetic energy upon impact:    ½ mv2 = 

mgh, where v is the maximum velocity 

reached immediately after impact.  

Vmax = [2gh]1/2 

a = (Vmax -Vo) /tmax -to   
a = (2gh)1/2 / t .   
 

David 

Smith 

REFERENCE 

 

target arm 

striker arm 

BPA 
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   In the fall of 2014, David Smith joined "Smith and Nephew, Ltd", and the project was 
transferred to MS student Edmond A. Rogers.  

 Subsequent extensive experimentation showed rapid progress and 
a welcome consistency in response profiles. The dominant profile is a two 
phase, three-plateau activity response shown in below. Phase 1 consist of 
two activity plateaus: Pl-1 is characterized by a rapid return of activity (1 to 
2 minutes) that remains stable for 5 minutes at 25% below reference;  Pl-2 
stabilizes at 10 % below reference for five hours, preceded by a gradual 
increase over a 7 min period.  Phase 2 describes a subsequent slow 
activity loss to approximately 40% of reference over 24 hours, stabilizing 
as Plateau 3. This long-term damage profile appears stable and has not 
yet shown activity recovery to Reference in any experiment.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

David 

Smith 

Edmond Rogers 

Dominant response profile (example: ER52).  (A) Phase 1. A brief (5 min) partial activity 

recovery to 28% of reference (Plateau 1), is followed by a 4 minute climb (slope= +12.5 spikes 

per min) to within 10% of reference, where activity remains stable for ~300 min (Plateau 2). 

Dashed yellow lines represent established activity plateaus. REF is native culture spontaneous 

activity.  (B) Phase 2. Expanded time scale of Phase 1 showing ~300 min Plateau 2 stabilization 

followed by a subsequent decay at 0.06 spikes per minute to Plateau 3 at 30% below reference 

activity with 98.5% of active unit retention. Note: Dead time includes temperature increase to 

37°C before amplifier reconnect.  The number of active units stays constant (red line), implying 

no cell death or major disruption of cell-electrode coupling. 

 

 

 

active units stays constant, implying no cell death or major disruption of cell-electrode coupling. 

 

 Phase 2   (delayed activity decay) 

PLATEAU 3 
PLATEAU 2 

Pl-1 

 Phase 1 (recovery) 

PLATEAU  1 

PLATEAU  2 

REF 
Impact 

Disconnect 
Active units 

Average Spikes/min  

 

A 

B 
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 The profile data to date has been summarized in Table 1 below. The Table shows results 

from 12 two-phase experiments, which includes one preliminary experiment by David Smith 

(2014).  In all cases, plateau 1 represent a decrease, plateau 2 a partial recovery, and plateau 3 

a subsequent delayed activity decay.  These are major response features that are consistent.  

Although standard deviations are still relatively high, technical problems such as measuring 

acceleration or measuring response angles play a role in the data fluctuations.     

 

 

     PLATEAU 1 PLATEAU 2 PLATEAU 3 

EXP #  FORCE 
Angle/G 

Units 
Lost 

Time  
to P1  
(min) 

% Dec 
from 
REF 

Time 
Durat. 
(min) 

Time 
to P2 
(min) 

% Dec 
( Ref ) 

Time 
Durat 
(min) 

Activity 
Decr. 

start  AT 
hrs post 
Impact 

DS 028  80/ 640 2/40  2 -63 % 18 23  - 19%  90   

ER 09 35/ 350 0/49 2 -11% 4 2    -8% 10  stopped  

ER 10 60/ 520 18/48 2 -34% 14 6 -20% 60 -50% 17 h 

ER 12 60/ 520 0/100 3  -28% 8 11  -17% >40 stopped  

ER 18 60/ 520 0/44 2 -15% 6 5   - 5% 35  no decay  P3 

ER 21-1 60/ 520 0/11 2 -17% 6 9 -5% 60 stopped  

ER 24-1 30/ 350 0/45 2 -40% 5 2   29% 30 -69% 6.3 h 

ER 28 30/ 350 0/29 1 -21 % 4  2   -6% 450 -12% 10.9 h 

ER 30 30/ 350 4/15 2 -28% 5 4 -14% 100 -37% 10 h 

ER 39 30/ 350 1/20 2 -19% 5  13 - 4% 10  -38% 16 h 

ER 50 60/ 520 0/28 2 -29 % 6  4  - 9% 270 -15% 11 h 

ER 52 60/ 520 1/65 2  -28 % 5  8 - 10% 300 -40% 17 h 

24.5±8.7%SD 12.4±9.1%SD 37.2±19.6%SD 

Table 1.   A current table of impact experiments, including one experiment from a former 

CNNS member (DS 028, Smith and Gross, 2014). Red numbers reference the relatively large 

number of units lost in one experiment. The 'Units lost' column shows the units that could not 

be recovered after impact with the total number of selected discriminated units during the 

reference period. "Angle" refers to the initial angle before release of the striker arm. 

Acceleration g's were measured but the accelerometer has not been calibrated.  All changes 

are compared to the reference activity and all are negative.  Positive changes (increased 

activity) have not yet been seen.  

Phase 2 and the associated Plateau 3 were often truncated (stopped) to prepare for a second  

impact or due to failure of the life support system.  The last column refers to the time post-

impact when a level plateau is re-established, albeit always below the reference.  ER18 

showed a gradual activity decay to that never formed a plateau 3. 
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 The investigations by Edmond Rogers revealed an unexpected morphological response 
of major significance.   Nuclei in nerve cells began to rotate after impact with a delay of 30 
to 60 min.   

 In highly polarized cells, such as nerve cells, the nucleus must be stable to ensure 
specific protein trafficking into axons or dendrites.  Inappropriate transport of proteins to the 
wrong target can cause loss of function in the absence of cell death.  Synaptic dysfunction, for 
example, results in memory loss and performance or behavioral changes.  Whereas we 
expected immediate nuclear displacement after impact and cytoskeletal stress, such a response 
was not seen frequently. Instead, the delayed nuclear rotation suggests release of calcium ions 
from internal stores and gradual enzymatic weakening of the cytoskeleton and, especially, the 
anchoring of the nuclear membrane to the cytoskeleton.  Such a delay would explain the 
observed Phase 2 deficits in activity.   

 

 

 

 

 

 

 

 

ER 83 

-15min 

+616 

 t= -15 min

                   
  

 t= +60 min

                   
  

MMoovveemmeenntt  ooff  NNuucclleeuuss  aafftteerr  IImmppaacctt 

EXP ER48.  Rotation of nucleus after impact at t=0. Nucleus 
is stable for 345 min before impact. Rotation did not start 
until 100 min after impact. Rate: 1.4 deg per min. 

EXP ER83:  
150 º 
Rotation 
CCW. 

EXP. ER 100:    
40 º CCW 
rotation in  

60 min 

It is not known how the cell would repair such a transport misalignment but the in vitro method 
described in this section makes it feasible to systematically explore pharmacological 
interventions that may speed up recovery or prevent further damage after impact. 
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TOTAL MORPH. 

EXPERIMENTS 

number 

28 

Nuclear 

rotation 

  

Time lapse 5   80%   

    control (no I) 3    0%  
 

Micrographs 14    93%*     

     Controls                                           

(no Impact) 

1   0%   

MEA breakage 5   N/A   

 

SUMMARY

Table 2. Summary of morphological 

observations listing time lapse 

experiments and manual 

micrographs. In both cases nuclear 

rotation was observed in 83% and 

93% of the observations, 

respectively.   

*Multiple cells per experiment 

 

*: multiple cells 

 

 

(1) No significant loss of adhesion has so far been observed (300g max.).  Activity loss is indicative 
of cellular damage, possibly due to:    

 (A)   Membrane Microporation;        
 (B)  Synaptic Damage:   
  Preliminary data from cross-correlograms suggests synaptic damage. 
 
(2) Network spike production and spike patterns are affected before cell death occurs.  
 
(3) Changes in network action potential production and types of patterns expressed are  
   cell culture correlates of changes in animal performance and behaviour.   
 This method of injury reveals subtle, repeatable, electrophysiology alterations, some of which 

may not be reversible.  
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CCOONNTTRROOLL::  stable cross correlation patterns during reference period 
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response profile.  NOTE: culture was under 40 microMolar bicuculline.  
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Strategic Goals for the next 5 Years 

 

1. Develop high throughput 8, 16, and 48 network platforms for parallel analysis, complete 
with automated life support, data analysis and display, and a sophisticated, user-friendly 
interface.   

 Application Areas: industrial and environmental toxicology, quantitative pharmacology, 

drug development. 

2.  Expand the current platform technology for use as broad-band biosensors. The systems 

proposed are not olfactory systems but rather physiological neuronal sensors. They show 

parallel alteration in activity at concentrations that also affect mammals. As living tissues, 

they respond to unknown or uncharacterized compounds and agents. Current technology 

sensors require a molecular signature and a priori knowledge of what agents may be 

used. They cannot respond to unknown agents.               

Application Area: Homeland Security 

3.  Expand platforms for use with non-neural tissues that are electrically active (pancreatic 

cells, cardiac cells).                        

Application Area: Medicine & Disease States 

4.   Provide single network recording platforms with 256 (or more) electrodes for high density 

interrogation of network dynamics. These systems will be designed for basic research in 

network physiology, network pattern processing, theoretical models, and computational 

neuroscience. 

5.       Modify the proposed platforms to allow long-term testing. Neuronal networks can live for 

over 9 months in culture and chronic testing is possible if the appropriate long-term life 

support conditions are met. 

6.    Develop an impedance spectroscopy capability to measure cell layer impedances with 

primary application to CANCER CELL proliferation and pharmacological arrest or 

destruction.             

Application Area:  Patient- and cancer tissue- specific drug efficacy evaluation. 

7. Validate the in vitro Traumatic Brain Injury method and initiate studies of 

pharmacological and physical interventions that enhance recovery. 
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